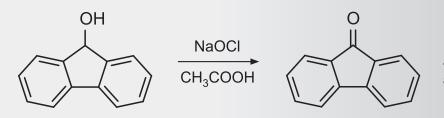
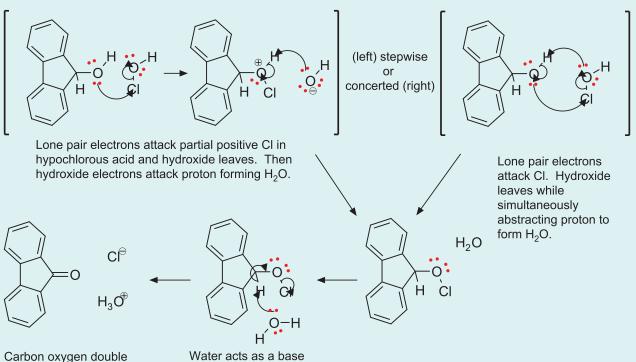
ANASAZI **EXPERIMENT SERIES**

OXIDATION OXIDATION OF 9-FLUORENOL



DID YOU KNOW?

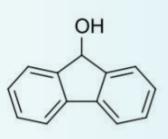
Reduction-oxidation reactions, or redox reactions, have enormous importance in biological systems. For example, your cells oxidize glucose to CO₂ providing much of the energy you use!


Oxidation reactions are particularly useful tools for synthetic chemists. They functionalize otherwise unreactive positions on molecules adding new chemical possibilities to explore!

THE REACTION

Note: sodium hypochlorite and acetic acid form hypochlorous acid - the key oxidant in this rxn.

THE MECHANISM


Carbon oxygen double bond forms; chloride ion leaves. Water acts as a base attacking acidic proton.

SPECTRA & INTERPRETATION

9-Fluorenol¹H NMR

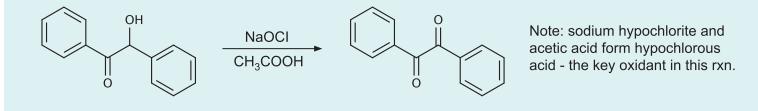
(60 MHz, 2 scan, 22 seconds)

¹H NMR spectrum of 9-fluorenol in DMSO shows a group of signals at 7.2 - 8.0 ppm that arises from the aromatic protons. The -CH proton resonantes at 5.5 ppm and the -OH proton resonantes at 4.7 ppm.

Fluorenone ¹H NMR

(60 MHz, 2 scan, 22 seconds)

Comparing fluorenone with 9-fluorenol, we see two fewer protons as a result of oxidation. Consequently, the -OH and -CH signals do not appear in the ¹H NMR spectrum of fluorenone. The signals at 7.2 - 7.8 ppm arise from the aromatic protons.


REINFORCE KEY CONCEPTS

+ electronegativity

+ oxidation state

+ oxidizing agent

PRACTICE THE MECHANISM

